Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7
and target 7
,
A solution set is:
[7]
[2, 2, 3]
Use Depth-First-Search to find possible solutions.
C++ Code:
/* * func: combination_sum_helper * goal: helper function to perform a depth first search * @param candidates: a set of candidate numbers * @param target: target value * @param candidate_combination: current possible solution * @param result: final solution set * return: */ void combination_sum_helper(vector<int> candidates, int target, vector<int> candidate_combination, vector<vector<int> >& result){ if(target == 0){ result.emplace_back(candidate_combination); return; } else if(target < 0){ return; }else{ for(int i = 0; i < candidates.size(); ++i){ if(candidates[i] <= target){ vector<int> formed_vector(candidates.begin()+i, candidates.end()); candidate_combination.emplace_back(candidates[i]); combination_sum_helper(formed_vector, target - candidates[i], candidate_combination, result); candidate_combination.pop_back(); } } } } /* * func: combination_sum * goal: find all unique combinations where candidate numbers sum to T * @param candidates: a set of candidate numbers * @param target: target value * return: all possible combinations */ vector<vector<int> > combination_sum(vector<int> &candidates, int target){ vector<vector<int> > result; sort(candidates.begin(), candidates.end()); if(candidates.size() == 0 || candidates[0] > target){ return result; } vector<int> candidate_combination; combination_sum_helper(candidates, target, candidate_combination, result); return result; }
Python Code:
# func: helper function for combination sum # @param candidates: candidates numbers # @param target: target value # @param result: final result set # @param candidate_solution: current solution list # @return: def combination_sum_helper(candidates, target, result, candidate_solution): if target == 0: result.append(candidate_solution) elif target < 0: return else: for i in xrange(len(candidates)): if candidates[i] <= target: combination_sum_helper(candidates[i:], target - candidates[i], result, candidate_solution + [candidates[i]]) # func: find all unique combinations in candidate set where the candidate numbers sum to T # @param candidates: candidate set # @param target: the target value # @return: a list of lists of numbers def combination_sum(candidates, target): candidates.sort() if len(candidates) == 0 or candidates[0] > target: return [] result = [] combination_sum_helper(candidates, target, result, []) return result
No comments:
Post a Comment