Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE"
is a subsequence of "ABCDE"
while "AEC"
is not).
Here is an example:
S = "rabbbit"
, T = "rabbit"
Return 3
.
We can use dynamic programming to solve this problem. Let dp[i] be the number of ways to match T[i:] in S. Then we start from the end of S string and check backwards, if S[j] == T[i], dp[i] += dp[i+1]. Let's take an example:
S: rabbbitt; T: rabbit ; Si = 7; dp:[0, 0, 0, 0, 0, 1, 1]
S: rabbbitt; T: rabbit ; Si = 6; dp:[0, 0, 0, 0, 0, 2, 1]
S: rabbbitt; T: rabbit ; Si = 5; dp:[0, 0, 0, 0, 2, 2, 1]
S: rabbbitt; T: rabbit ; Si = 4; dp:[0, 0, 0, 2, 2, 2, 1]
S: rabbbitt; T: rabbit ; Si = 3; dp:[0, 0, 2, 4, 2, 2, 1]
S: rabbbitt; T: rabbit ; Si = 2; dp:[0, 0, 6, 6, 2, 2, 1]
S: rabbbitt; T: rabbit ; Si = 1; dp:[0, 6, 6, 6, 2, 2, 1]
S: rabbbitt; T: rabbit ; Si = 0; dp:[6, 6, 6, 6, 2, 2, 1]
C++ Code:
/* * func: distinct_sequence * goal: count the number of distinct subsequences of T in S * @param S: source string * @param T: target string * return: total number */ /* * using DP: dp_helper[i] means the number of ways to match until the ith char in T * complexity: time O(ST), space O(T) */ int distinct_sequence(string S, string T){ vector<int> dp_helper(T.size() + 1); dp_helper[T.size()] = 1; for(int i = S.size()-1; i >= 0; --i){ for(int j = 0; j < T.size(); ++j){ if(S[i] == T[j]) dp_helper[j] += dp_helper[j+1]; } } return dp_helper[0]; }
Python Code:
# func: count the number of distinct subsequences of T in S # @param S: source string # @param T: target string # @return: total count def distinct_subsequence(S, T): dp_helper = [0] * (len(T)+1) dp_helper[-1] = 1 for i in xrange(len(S)-1, -1, -1): for j in xrange(len(T)): if S[i] == T[j]: dp_helper[j] += dp_helper[j+1] return dp_helper[0]
No comments:
Post a Comment