Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).
Here is an example:
S = "rabbbit", T = "rabbit"
Return 3.
We can use dynamic programming to solve this problem. Let dp[i] be the number of ways to match T[i:] in S. Then we start from the end of S string and check backwards, if S[j] == T[i], dp[i] += dp[i+1]. Let's take an example:
S: rabbbitt; T: rabbit ; Si = 7; dp:[0, 0, 0, 0, 0, 1, 1]
S: rabbbitt; T: rabbit ; Si = 6; dp:[0, 0, 0, 0, 0, 2, 1]
S: rabbbitt; T: rabbit ; Si = 5; dp:[0, 0, 0, 0, 2, 2, 1]
S: rabbbitt; T: rabbit ; Si = 4; dp:[0, 0, 0, 2, 2, 2, 1]
S: rabbbitt; T: rabbit ; Si = 3; dp:[0, 0, 2, 4, 2, 2, 1]
S: rabbbitt; T: rabbit ; Si = 2; dp:[0, 0, 6, 6, 2, 2, 1]
S: rabbbitt; T: rabbit ; Si = 1; dp:[0, 6, 6, 6, 2, 2, 1]
S: rabbbitt; T: rabbit ; Si = 0; dp:[6, 6, 6, 6, 2, 2, 1]
C++ Code:
/*
* func: distinct_sequence
* goal: count the number of distinct subsequences of T in S
* @param S: source string
* @param T: target string
* return: total number
*/
/*
* using DP: dp_helper[i] means the number of ways to match until the ith char in T
* complexity: time O(ST), space O(T)
*/
int distinct_sequence(string S, string T){
vector<int> dp_helper(T.size() + 1);
dp_helper[T.size()] = 1;
for(int i = S.size()-1; i >= 0; --i){
for(int j = 0; j < T.size(); ++j){
if(S[i] == T[j])
dp_helper[j] += dp_helper[j+1];
}
}
return dp_helper[0];
}
Python Code:
# func: count the number of distinct subsequences of T in S
# @param S: source string
# @param T: target string
# @return: total count
def distinct_subsequence(S, T):
dp_helper = [0] * (len(T)+1)
dp_helper[-1] = 1
for i in xrange(len(S)-1, -1, -1):
for j in xrange(len(T)):
if S[i] == T[j]:
dp_helper[j] += dp_helper[j+1]
return dp_helper[0]
No comments:
Post a Comment