Given a set of distinct integers, S, return all possible subsets.
Note:
- Elements in a subset must be in non-descending order.
- The solution set must not contain duplicate subsets.
For example,
If S = [1,2,3]
, a solution is:
[ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
We can use the same idea as compute combinations, to perform a depth first search.
C++ Code:
/* * func: subsets_helper * goal: helper function for subsets * @param curr: current start index * @param S: given set * @param cur_set: current subset * @param result: final result set * return: */ void subsets_helper(int curr, vector<int> &S, vector<int> &cur_set, vector<vector<int> > &result){ if(curr > S.size()){ return; } result.emplace_back(cur_set); for(int i = curr; i < S.size(); ++i){ cur_set.emplace_back(S[i]); subsets_helper(i+1, S, cur_set, result); cur_set.pop_back(); } } /* * func: subsets * goal: get all possible subsets of the given set * @param S: given set * return: all possible subsets */ vector<vector<int> > subsets(vector<int> &S){ vector<vector<int> > result; vector<int> cur_set; subsets_helper(0, S, cur_set, result); return result; }
Python Code:
# func: compute subsets of the given set # @param S:input set # @return: all possible subsets def subsets(S): S.sort() result = [] subset = [] def subsets_helper(curr): if curr > len(S): return result.append(subset[:]) for i in xrange(curr, len(S)): subset.append(S[i]) subsets_helper(i+1) subset.pop(-1) subsets_helper(0) return result
No comments:
Post a Comment