Given a set of distinct integers, S, return all possible subsets.
Note:
- Elements in a subset must be in non-descending order.
- The solution set must not contain duplicate subsets.
For example,
If S = [1,2,3], a solution is:
[ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
We can use the same idea as compute combinations, to perform a depth first search.
C++ Code:
/*
* func: subsets_helper
* goal: helper function for subsets
* @param curr: current start index
* @param S: given set
* @param cur_set: current subset
* @param result: final result set
* return:
*/
void subsets_helper(int curr, vector<int> &S, vector<int> &cur_set, vector<vector<int> > &result){
if(curr > S.size()){
return;
}
result.emplace_back(cur_set);
for(int i = curr; i < S.size(); ++i){
cur_set.emplace_back(S[i]);
subsets_helper(i+1, S, cur_set, result);
cur_set.pop_back();
}
}
/*
* func: subsets
* goal: get all possible subsets of the given set
* @param S: given set
* return: all possible subsets
*/
vector<vector<int> > subsets(vector<int> &S){
vector<vector<int> > result;
vector<int> cur_set;
subsets_helper(0, S, cur_set, result);
return result;
}
Python Code:
# func: compute subsets of the given set
# @param S:input set
# @return: all possible subsets
def subsets(S):
S.sort()
result = []
subset = []
def subsets_helper(curr):
if curr > len(S):
return
result.append(subset[:])
for i in xrange(curr, len(S)):
subset.append(S[i])
subsets_helper(i+1)
subset.pop(-1)
subsets_helper(0)
return result
No comments:
Post a Comment